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LECTURE 9

• Continuous functions cont'd

• Derivative of a function at a point



Theorem. (Intermediate Value Theorem, Darboux Theorem)
If a function 𝑓 is continuous on a closed interval 𝑎, 𝑏 then 𝑓
takes on every value between 𝑓(𝑎) and 𝑓(𝑏). 

To be more precise: if 𝑓 is continuous on 𝑎, 𝑏 then for every 
𝑦0 ∈ 𝑓 𝑎 , 𝑓(𝑏) (or 𝑦0 ∈ 𝑓 𝑏 , 𝑓(𝑎) , if 𝑓(𝑏) ≤ 𝑓(𝑎)) there 
exists 𝑥0 ∈ [𝑎, 𝑏] such that 𝑓 𝑥0 = 𝑦0.

The proof is beyond the scope of this course.

Corollary.
If 𝑓 is continuous on 𝑎, 𝑏 and 𝑓 𝑎 and 𝑓(𝑏) differ in sign then 
there exists at least one 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 𝑥 = 0.

Corollary. (of corollary)
Every polynomial of an odd degree has at least one (real) root.



Theorem. (Extreme Value Theorem)
If 𝑓 is continuous on a closed interval [a,b] then it takes on its 
largest and its smallest values on the interval. 

More precisely: there exist 𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛[𝑎; 𝑏] such 𝑓 𝑥𝑚𝑎𝑥 =
sup(𝑓 𝑎, 𝑏 ) and 𝑓(𝑥𝑚𝑖𝑛) = inf(𝑓 𝑎, 𝑏 ).

The proof is beyond the scope of this course.

The theorem may be re-phrased as:

If f is continuous on a closed interval [a;b] then 𝑓([𝑎; 𝑏]) is also 
a closed interval.



An illustration of the principle.

𝑓(𝑥) = 
1

𝑥
is continuous on (0,1) but not on [0,1]. The set of 

values is unbounded from above, so 𝑓(𝑥) does not assume its 
largest value (because there is no largest value). On the other 
hand, it is bounded from below by 1 and the set of lower bounds 
has the largest element, namely 1. But 1 is not a value for this 
function at any point in the open interval (0,1). It is, of course, 
the value of 𝑓(𝑥) for 𝑥 = 1 which, however, does not belong to 

(0;1) (but does to [0;1]). We can also write 𝑓 0,1 = (1,+∞)

Comprehension.
What is tan([0;])?



Another illustration of the principle.
𝑓(𝑥) = 𝑥2 is continuous on (−1,2) but it has no largest value in 

(−1,2). Of course sup 𝑓 −1,2 = sup 0,4 = 4 and 4 =

𝑓(2) but 2 ∉ (−1,2). 

A continues function 𝑓 on a closed interval I is guaranteed to 
assume its largest and smallest values on I at some points of I.

If I is not a closed interval, 𝑓 may assume its extreme values in I, 
but it's not guaranteed to. 

In the above example, 𝑥2 assumes its smallest value  on −1,2 , 
which is 0, at 𝑥 = 0.



How to find those points in an interval where a function assumes 
its extreme values (locally extreme values) is, however, a 
completely different story.



(Not-very-formal) Definition.

The tangent line (or just tangent) to the graph of a function 

𝑓(𝑥) at a point 𝑐 is the straight line 𝑦 = 𝑔(𝑥) = 𝑝𝑥 + 𝑞
whose slope 𝑝 is the local rate of growth of the function 𝑓(𝑥)
at 𝑐 and whose Y-intercept 𝑞 is such that 𝑔 𝑐 = 𝑓(𝑐).

The second part means that the point 𝑐, 𝑓 𝑐 belongs to 

both the graph of 𝑦 = 𝑓(𝑥) and the line 𝑦 = 𝑝𝑥 + 𝑞.



Problem.

Given a function 𝑓 𝑥 and a point 𝑐 from its domain how do 

we compute the slope 𝑝 of the tangent to 𝑓 𝑥 at 𝑐 (if a tangent

exists)?

Consider the secant to the curve passing through points 𝑃 =

𝑐, 𝑓 𝑐 and 𝑄 = 𝑥, 𝑓 𝑥 . It stands to reason (tricky 

phrase!) that the closer 𝑥 gets to 𝑐, the better the slope of the 

line 𝑃𝑄 approximates the slope of the tangent.



Definition.

Let 𝑓 𝑥 be a function and let 𝑐 be a point in its domain. If 

there exists a number 𝐿 = lim
𝑥→𝑐

𝑓 𝑥 −𝑓 𝑐

𝑥−𝑐
then 𝑓 is said to be 

differentiable at c and 𝐿 is called the derivative of 𝑓(𝑥) at 𝑐
and is denoted by 𝑓′ 𝑐 . Otherwise 𝑓(𝑥) is non-differentiable 

at c.

𝑓′ 𝑐 is the slope of the tangent to the graph of 𝑓(𝑥) at 𝑐.

Sounds familiar? 

Yes, it smells of a limit from 

miles away!



Recall that the tangent to the graph of 𝑓(𝑥) at a point 𝑐 is the 

line 𝑦 = 𝑔(𝑥) = 𝑓′(𝑐)𝑥 + 𝑞 such that 𝑝 = 𝑓′(𝑐) where 𝑞 is 

such that 𝑔 𝑐 = 𝑓(𝑐). Hence, 𝑓 𝑐 = 𝑓′ 𝑐 𝑐 + 𝑞, which

means 𝑞 = 𝑓 𝑐 − 𝑓′ 𝑐 𝑐. Finally 

𝑦 = 𝑓′ 𝑐 𝑥 + 𝑓 𝑐 − 𝑓′ 𝑐 𝑐 = 𝑓′ 𝑐 𝑥 − 𝑐 + 𝑓 𝑐 .

Fact.

If 𝑓′(𝑐) exists, then the equation of the tangent to the graph of 

𝑓 at 𝑐 is given by 

𝑦 = 𝑓′ 𝑐 𝑥 − 𝑐 + 𝑓 𝑐

𝑦 = 𝑓′ 𝑐 𝑥 − 𝑐 + 𝑓 𝑐



We can define the derivative of a function in a slightly different 

way:

Definition.

For every 𝑥 such that the limit lim
ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ
exists, the limit is 

called the derivative of 𝑓 at 𝑥 and is denoted by 𝑓′(𝑥).

Now, 𝑓′ is a function which assigns to 𝑥 the derivative of 𝑓 at 𝑥. 

Notice that 𝑓′(𝑥) may not exist at some points belonging to the 

domain of 𝑓.

Note. The alternate symbol of the derivative function 𝑓′ is 
𝑑𝑓

𝑑𝑥
.



Examples. Find the derivative of 𝑓(𝑥)
1. 𝑓 𝑥 = |𝑥|.

For every 𝑥 > 0, lim
ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ
= lim

ℎ→0

𝑥+ℎ−𝑥

ℎ
= 1.

For every 𝑥 < 0, lim
ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ
= lim

ℎ→0

−𝑥−ℎ+𝑥

ℎ
= −1.

At 𝑥 = 0, lim
ℎ→0+

𝑓 0+ℎ −𝑓 0

ℎ
= lim

ℎ→0+

ℎ−0

ℎ
= 1 while 

lim
ℎ→0−

𝑓 0+ℎ −𝑓 0

ℎ
= lim

ℎ→0+

−ℎ−0

ℎ
= −1. 

Hence, |𝑥| is not differentiable at 0.

This example leads to the concept of one-sided derivatives 𝑓+
′

and 𝑓−
′ and, consequently, to the fact that 𝑓′(𝑐) exits iff 𝑓+

′ and 𝑓−
′

exist at 𝑐 and 𝑓+
′ 𝑐 = 𝑓−

′(𝑐).



Examples (cont'd)

2. 𝑓 𝑥 = 𝑥.

For every 𝑥, lim
ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ
= lim

ℎ→0

𝑥+ℎ−𝑥

ℎ
= 1. (𝑥′ = 1)

3. 𝑓 𝑥 = 𝑐, 𝑐 represents a constant. Clearly, 𝑐′ = 0.

4. 𝑓 𝑥 = 𝑥2. lim
ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ
= lim

ℎ→0

𝑥+ℎ 2−𝑥2

ℎ
=

lim
ℎ→0

𝑥2+2𝑥ℎ+ℎ2−𝑥2

ℎ
= lim

ℎ→0

2𝑥ℎ+ℎ2

ℎ
= lim

ℎ→0
2𝑥 + ℎ = 2𝑥.



Theorem (differentiation vs. continuity)

If 𝑓 is differentiable at 𝑐 then 𝑓 is continuous at 𝑐.
Proof.

If lim
𝑥→𝑐

𝑓 𝑥 −𝑓 𝑐

𝑥−𝑐
= 𝐿 then 

lim
𝑥→𝑐

𝑓 𝑥 −𝑓 𝑐

𝑥−𝑐
lim
𝑥→𝑐

(𝑥 − 𝑐) = 𝐿 lim
𝑥→𝑐

(𝑥 − 𝑐) = 0. 

Hence, 

0 = lim
𝑥→𝑐

𝑓 𝑥 −𝑓 𝑐

𝑥−𝑐
lim
𝑥→𝑐

(𝑥 − 𝑐) =

lim
𝑥→𝑐

(𝑓 𝑥 − 𝑓(𝑐))
𝑥 − 𝑐

𝑥 − 𝑐
=

lim
𝑥→𝑐

(𝑓 𝑥 − 𝑓(𝑐)) . QED

(we can use the product rule because
both limits exist)



Theorem (Arithmetic properties of derivative)

1. 𝑐′ = 0 (derivative of every constant function is zero),

2. 𝑐𝑓 𝑥
′
= 𝑐𝑓′(𝑥),

3. 𝑓 + 𝑔 ′ 𝑥 = 𝑓′ 𝑥 + 𝑔′(𝑥),
4. 𝑓𝑔 ′ 𝑥 = 𝑓′ 𝑥 𝑔 𝑥 + 𝑓 𝑥 𝑔′(𝑥),

5.
1

𝑓 𝑥

′
=

−𝑓′ 𝑥

𝑓2 𝑥
.

6.
𝑓(𝑥)

𝑔 𝑥

′
=

𝑓′ 𝑥 𝑔 𝑥 −𝑓 𝑥 𝑔′(𝑥)

𝑔2 𝑥

Proof. 1, 2 and 3 are obvious (by properties of limits). 5 follows 

from 1 and 4 by putting 𝑔 𝑥 =
1

𝑓 𝑥
. 6 follows from 4 and 5.



Proof (of 4, for the curious)

𝑓 𝑥 𝑔 𝑥 ′ = lim
ℎ→0

𝑓 𝑥+ℎ 𝑔 𝑥+ℎ −𝑓 𝑥 𝑔 𝑥

ℎ
=

lim
h→0

𝑓 𝑥+ℎ 𝑔 𝑥+ℎ −𝑓 𝑥+ℎ 𝑔 𝑥 +𝑓 𝑥+ℎ 𝑔 𝑥 −𝑓 𝑥 𝑔 𝑥

ℎ
= 

lim
ℎ→0

𝑓 𝑥+ℎ (𝑔 𝑥+ℎ −𝑔 𝑥 )+(𝑓 𝑥+ℎ −𝑓 𝑥 )𝑔 𝑥

ℎ
= 

lim
ℎ→0

(
𝑓 𝑥+ℎ (𝑔 𝑥+ℎ −𝑔 𝑥 )

ℎ
+

(𝑓 𝑥+ℎ −𝑓 𝑥 )𝑔 𝑥

ℎ
) =

lim
ℎ→0

(𝑓 𝑥 + ℎ
(𝑔 𝑥+ℎ −𝑔 𝑥 )

ℎ
+

(𝑓 𝑥+ℎ −𝑓 𝑥 )

ℎ
𝑔 𝑥 ) =

lim
ℎ→0

𝑓 𝑥 + ℎ lim
ℎ→0

(𝑔 𝑥+ℎ −𝑔 𝑥 )

ℎ
+ lim

ℎ→0

(𝑓 𝑥+ℎ −𝑓 𝑥 )

ℎ
lim
ℎ→0

𝑔 𝑥 = 

𝑓(𝑥)𝑔′(𝑥) + 𝑓 ′(𝑥)𝑔(𝑥). QED 



Theorem (Chain rule, derivative of the composition of functions)

𝑓 ∘ 𝑔 ′ 𝑥 = 𝑓′ 𝑔 𝑥 𝑔′(𝑥)

Proof. Skipped, it is beyond the scope of this course.

Corollary. (Derivative of the inverse function)

If the function 𝑓−1 exists, then

𝑓−1 𝑥
′
=

1

𝑓′ 𝑦
, where 𝑓 𝑦 = 𝑥.

Proof.

The chain rule with 𝑔 = 𝑓−1 yields: 

𝑓 ∘ 𝑓−1 ′ 𝑥 = 𝑓′ 𝑓−1 𝑥 𝑓−1 ′ 𝑥 = 1, because

𝑓 ∘ 𝑓−1 ′ 𝑥 = 𝑥′ = 1. Hence, 𝑓−1 ′ 𝑥 =
1

𝑓′ 𝑓−1 𝑥
=

1

𝑓′ 𝑦
. 

QED



Theorem. (Basic formulas)

𝑥𝑛 ′ = 𝑛𝑥𝑛−1 for 𝑛 ∈ ℤ ∖ {0}
𝑥𝑎 ′ = 𝑎𝑥𝑎−1 for 𝑎 ∈ ℝ and 𝑥 > 0,

sin 𝑥 ′ = cos 𝑥,

cos 𝑥 ′ = −sin 𝑥,

(tan 𝑥)′ =
1

cos2 𝑥
for 𝑥 ≠ 𝑘𝜋 +

𝜋

2
,

cot 𝑥 ′ = −
1

sin2x
for 𝑥 ≠ 𝑘𝜋,

𝑒𝑥 ′ = 𝑒𝑥,

𝑎𝑥 ′ = 𝑎𝑥 ln 𝑎, for 𝑎 > 0 and 𝑎 ≠ 1,



Theorem. (Basic formulas cont'd)

arcsin 𝑥 ′ =
1

1−𝑥2
, where 𝑥 ≠ 1,

arccos 𝑥 ′ =
−1

1−𝑥2
, when 𝑥 ≠ 1,

(arctan 𝑥)′ =
1

1+𝑥2
,

𝑙𝑛 𝑥 ′ =
1

𝑥
, 𝑥 > 0,

log𝑎𝑥
′ =

1

𝑥𝑙𝑛 𝑎
for 𝑥, 𝑎 > 0 and  𝑎 ≠ 1


